

Long-Term Care Insurance: The SOA Pricing Project

Long Term Care Insurance: The SOA Pricing Project

PRIMARY AUTHOR	Robert Eaton, FSA, MAAA	
PRIMARY REVIEWERS	Stephen D. Forman, CLTC Jim Glickman, FSA, MAAA, FCA, FLMI, CLU	Ron Hagelman Roger Loomis, FSA, MAAA Joe Wurzburger, FSA, MAAA
PROJECT COMMITTEE	Noelle Destrampe, FSA, MAAA	Roger Gagne, FSA, MAAA
MEMBERS	Jim Glickman, FSA, MAAA, FCA, FLMI, CLU Peggy Hauser, FSA, MAAA	Ron Hagelman Laurel Kastrup, FSA, MAAA
	Dave Kerr, ASA, MAAA	Perry Kupferman, FSA, MAAA
	Roger Loomis, FSA, MAAA	Dave Plumb, FSA, MAAA
	Al Schmitz, FSA, MAAA	Eric Stallard, ASA, FCA, MAAA
	Mary Swanson, FSA, MAAA	Brian Ulery, FSA, MAAA
	Joe Wurzburger, FSA, MAAA	

Caveat and Disclaimer

This study is published by the Society of Actuaries (SOA) and contains information from a variety of sources. It may or may not reflect the experience of any individual company. The study is for informational purposes only and should not be construed as professional or financial advice. The SOA does not recommend or endorse any particular use of the information provided in this study. The SOA makes no warranty, express or implied, or representation whatsoever and assumes no liability in connection with the use or misuse of this study.

Copyright © 2016 by the Society of Actuaries. All rights reserved.

CONTENTS

Introduction	4
Executive Summary	4
A New Offering for Consumers	5
A Need for Protection	5
Tomorrow's LTC Insurance Consumer	7
Company Perspective	8
Introduction	8
New Policy Pricing: Today's Environment	8
Implications to Company Risks	9
Current Pricing Perspective	9
Morbidity	10
Mortality	11
Morbidity and Mortality Improvement	12
Voluntary lapse	12
Investment Income	12
Expenses	13
Earning Back the Trust of Long-Term Care Producers	16
Technical Appendix	
Introduction	
Data	19
Summary of Key Illustrative Pricing Assumptions	19
Sales Distribution	20
Claim Cost Uncertainty	20
Lapse Uncertainty	21
Stochastic Methodology	21
Observations	22

Long-Term Care Insurance: The SOA Pricing Project

Introduction

Long-term care (LTC) services are critical to our nation's future. An estimated 50 million people will be 65 and older by 2020, and almost 50% of them are expected to use formal, paid long-term care support and services (LTSS).¹ Long-term care insurance (LTCI) can play a fundamental role in funding those services. Given these demands, we might expect a market surge of new insurers, ideas, products and possibilities to support our aging population. Instead, with few exceptions, we've seen an exodus, a shutting of doors and the financial fortification of most existing insurers.

This peculiar reaction to a market opportunity can be understood in the context of the seismic financial shocks that concluded the last decade. Interest rates dropped to their lowest levels in 60 years and threaten to remain low for the foreseeable future. Many insurance products—and LTC products in particular—become financially stressed when interest rates are lower than anticipated. This causes additional anxiety for LTC insurers, who are already cautious after misestimating policyholder lapse behavior. Most carriers have exited the LTC business, and many have moved to reinsure or sell the business they once sold. Those who have remained in the market first made certain that any new sales would be profitable, looking at strengthening market share as only a secondary goal.

This paper provides historical context and reasons underpinning the uncertainty of the first generations of LTCI pricing. It shows that, for these same reasons, LTC insurers should be more optimistic about the future financial risks of this product.

Executive Summary

Customers approaching the LTCI market today must be concerned. Very few options are available to them on a retail basis or in the worksite. They are nervous about purchasing LTCI, perhaps having heard from their financial advisors about years of rate increases on existing policies. And the policies left to buy are already priced higher than ever.

But sellers today should feel more encouraged than ever in meeting the needs of potential LTCI customers. The income and liquid assets of the average LTCI buyer have only increased in the last 15 years,² and the need to protect those assets has never been higher. As the economy has rebounded from

¹ Melissa Favreault and Judith Dey, "Long-Term Services and Supports for Older Americans: Risks and Financing Research Brief." Washington, DC: Office of the Assistant Secretary for Planning and Evaluation, July 1, 2015.

² "Who Buys Long-Term Care Insurance in 2010-2011? A Twenty-Year Study of Buyers and Non-Buyers (in the Individual Market)," AHIP, 2012, http://ltcinsurancee.com/wp-content/uploads/2015/07/Who-Buys-LTC-Insurance-2010-2011.pdf.

the recession, and as the college-educated population grows and becomes more mobile, the demand for LTCI should only increase. This paper demonstrates that sellers should feel confident about the pricing of LTC products from carriers currently developing these products. In particular, rate increases that were seen in the past are far less likely to impact the policies sold today.

Insurers are now pricing LTCI products with remarkably more knowledge than they've ever had, and this experience base continues to grow. Insurers have backed up against the bounds of pessimism in many key pricing assumptions, and further deterioration is less likely than it was in pricing earlier products. Coupled with the high risk margins that carriers require to stay in the LTCI market, as well as higher explicit margins on estimated benefits paid, the rate of return on new business sold today is expected to be higher than on earlier product generations.

The fluctuations in pricing for the first generations of LTC products were due to the paucity of actual claims to analyze, a crippling interest rate environment and the revelation that policyholders maintain their policies far longer than originally anticipated. Today, in the highest claim ages, we have almost six times the exposure base for analyzing LTC claims as we did seven years ago and 70 times the exposure since 2000. Interest rates are approaching the lower bound, and voluntary lapse rates are assumed to be close to 0%. This paper provides analysis to support the common sense conclusion that long-term care insurance pricing can be relied upon to meet the needs of both buyers and sellers.

A New Offering for Consumers

A Need for Protection

Long-term care consumers are like most insurance buyers: they want protection against risks and certainty for their future. The possibility of a long-term care event in the distant future may be enough to prompt them to purchase LTC insurance. The reason is simple: the financial burden of long-term care can be extreme. Not all long-term care events are created equal. Figure 1 illustrates expected LTC claim costs and durations, depending on where care is provided, based on the 2015 SOA Long-Term Care Basic Tables.

	Expected LOS (months) ³	Monthly cost (2016 \$) ⁴
Home health care	29	\$3,800
Assisted living facility	33	\$3,600
Nursing home facility	25	\$7,700

Figure 1: Expected LTC Claim Costs and Durations

³ These lengths of stay are illustrative in nature, based on historical industry LTC data found in the 2015 SOA Basic Tables. They are intended to provide only an example of the potential magnitude of LTC stays in various sites of care.

⁴ "Compare Long Term Care Costs Across the United States," Genworth Financial, Inc., accessed October 13, 2016, https://www.genworth.com/about-us/industry-expertise/cost-of-care.html.

Given these high costs, LTC insurance serves primarily to protect the customer's assets. The America's Health Insurance Plans (AHIP) survey of 2012⁵ bears this out: for 20 years, "asset protection" has ranked as the most important reason for the purchase of LTC insurance. The same AHIP survey found that the buyers of LTC insurance have increasingly more assets to protect. Figure 2 shows the shift in financial characteristics of LTC buyers from 2000 to 2010.

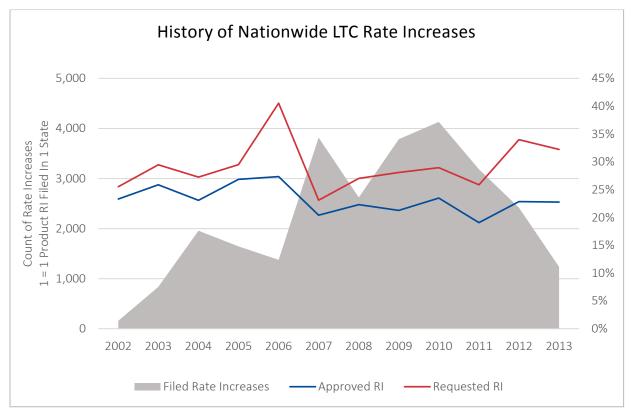

	2000	2005	2010
Median income	\$42,500	\$62,500	\$87,500
Income over \$50,000	42%	71%	77%
Total liquid assets over \$100,000	71%	76%	79%

Figure 2: Characteristics of LTC Buyers

Early generations of LTCI products were marketed (though not guaranteed) as level premium products, where premium payments were expected to remain the same for life, based on the age of the policyholder at issue. In return, the LTC carrier reimbursed or indemnified the policyholder for certain LTC costs. This plan mirrored the financial stability consumers wanted—level premiums in return for mitigating the future costs of a long-term care event.

It's no surprise that customers and regulators alike were upset at the waves of LTCI policy rate increases that swept the nation over the past 15 years, no matter how justified these increases were from an actuarial perspective. The reason customers bought LTC insurance to begin with was to help stabilize their families' future financial outlook. Insurers raised premium rates by 25% to 100% in a single year, and there was the added uncertainty of future rate increases. This did not give customers much comfort. Figure 3 illustrates average LTC rate increases requested and granted nationwide, as well as the count of rate increases filed, over time.

Figure 3: History of Nationwide LTC Rate Increases

Source: California Department of Insurance (DOI) listing of company historical LTC rate increases, for companies who filed for a rate increase in California, as of September 2014.⁶

We have reason to believe that many of the causes of this premium rate instability have been addressed in today's LTC pricing. In all likelihood, insurance carriers will continue to raise premium rates on earlier generations of LTC products. To make an informed purchase today, LTC buyers must be equipped with the context of those rate increases, namely that they are based on an earlier understanding of LTC risks. This prior understanding has been improved drastically with the recent 15 years of emerging data.

Tomorrow's LTC Insurance Consumer

While insurance carriers wrestled with the pricing of traditional stand-alone LTC policies, new forms of LTC insurance coverage emerged to meet the needs of some consumers. Combination life and health insurance products—referred to as "combo," "hybrid" or "living benefit" products—have emerged as a way for consumers to mitigate future LTC risks. Some of these products offer less asset protection than traditional LTC insurance; for instance, accelerating only a portion of the death benefit of a whole life or universal life policy. But they do so at a cost that is reasonable to the consumer and fits a market need.

⁶ California DOI website.

Tomorrow's LTC insurance buyer will have the benefit of selecting from a spectrum of LTC products from traditional stand-alone LTC to living benefit riders to accelerated death benefit (ADB) riders—each of which meets a particular need. Regardless of ongoing rate increases on older LTC products, this paper demonstrates that tomorrow's LTC insurance buyers may be more confident in how insurance carriers have priced the full spectrum of LTC products.

Company Perspective

Introduction

Long-term care insurance has evolved substantially since its infancy in the 1970s and 1980s. The surge of premium rate increases in the 2000s put significant strain on policyholders, sellers and carriers' product managers. This adolescent period for LTCI was difficult for all parties, and the pain continues for many older blocks today.

From the perspective of an insurer selling new LTC business or considering entering today's market, new business pricing has reached a more mature stage. Current LTC products face less risk than those of earlier generations on a number of fronts. This paper quantifies certain aspects of those risks and demonstrates the improved rate stability we can expect from new product pricing today.

New Policy Pricing: Today's Environment

Carriers that are considering entering the LTC market or have discontinued selling LTC products should welcome the current pricing environment. To be clear, this paper does not claim that today's LTC products will not need future rate increases. Rather, based on an analysis of pricing assumptions and historical experience, we conclude that LTC policies priced today are significantly less likely to need future premium rate increases than any earlier product generation.

We explain our methodology in a subsequent section and include technical details in the Technical Appendix to this paper. It is a simplistic view to look back on how experience emerged and conclude that original pricing assumptions were inappropriate. The analysis in this paper approaches LTC product pricing over many generations from a different perspective. We calculate prospectively—that is, from the view of someone developing LTC pricing in an earlier year—how likely premium rate increases were given the information available at the time to develop premium rates.

Companies pricing products during the years addressed in this study have increasingly sought greater rates of return on their LTC sales—for example, internal rate of return (IRR) on a statutory reporting basis—as market participation has dropped and the perceived risk of issuing new LTC policies has increased. As a result, the pricing margins and resulting IRRs are now higher than ever before. In 2000, LTC was viewed as a high-growth and relatively safe product; thus, a 10% IRR was sufficient to address these risks. By 2014, pricing IRRs of 20% to 25% were more common due to stricter underwriting standards and higher margins for adverse claims. Figure 4 shows the industry average pricing margins and IRRs in the three years covered by this study.

Pricing Year	Pricing Margin % of Premium	IRR
2000	10%	10%
2007	11%	15%
2014	13%	25%

Based on our analysis, we conclude that products priced in the current economic environment with a more mature experience base are less likely than earlier products to experience future rate instability.

Because of this, premium stability for today's LTC products is at its highest. The benefits of this understanding to the LTC industry are widespread.

Implications to Company Risks

<u>Pricing Risks</u>: The next section of this paper discusses actuarial pricing risk in LTC policies. There has been a substantial evolution in industry thinking on key assumptions such as voluntary lapse rates, morbidity and mortality. We document this evolution using data from carriers that have priced LTC products for more than 15 years. We also discuss the interest rate environment and expense assumptions.

<u>Operational Risk:</u> For a company with greater rate stability, fewer additional resources are needed for premium rate in-force management. Companies managing in-force rate increases use more compliance and administrative staff and legal resources. Rate increases are rarely implemented in a uniform manner across all policies, given the statutory nature of regulations and regulator preferences. The uncertainty of future administrative burdens accompanying rate increases should likewise reduce, particularly for companies that issue primarily new products.

<u>Regulatory Risk:</u> With a lower burden to seek new rate increases, carriers are better able to fortify their existing regulatory relationships on other fronts, such as other products. It is important to keep in mind that with a greater expectation of rate stability, regulators may be less sympathetic to future changes in LTC pricing.

<u>Legal Risk:</u> Long-term care rate increases have left some companies prone to litigation from dissatisfied policyholders. Higher rate stability in the future should reduce legal risk, all else being equal.

<u>Reputational Risk:</u> The consumer's perception of impending LTC rate increases is one of the largest hurdles for new carriers in the LTC market to overcome. For many older product generations, this perception is reality. If they are priced appropriately, new products will likely have fewer rate increases than earlier generations. It is the role of marketing departments and other players in the LTCI industry to tout the stability of products priced today. This extends beyond traditional stand-alone, comprehensive LTC policies into living benefit riders and other combination life plus health products.

Current Pricing Perspective

Pricing an LTC product in today's environment is less risky on many fronts than it has been in prior years. To demonstrate this, we look at industry trends from public sources, as well as data collected from insurers. We review the primary pricing assumptions: morbidity, mortality, voluntary lapse, investment income and expenses. We analyze the trends in these assumptions between three distinct pricing period years: 2000, 2007 and 2014. We selected these years because they represent distinct periods in the LTC product historical pricing:

- 2000: A baseline year, prior to the full-scale implementation of the National Association of Insurance Commissioners (NAIC) Long-Term Care Model Regulation of 2000 (also known as the "rate stability regulation").
- 2007: A period of accelerating sales in the LTC industry, prior to the financial crisis that occurred later in the decade.
- 2014: The most recent year available at the time the study was begun.

Morbidity

We reviewed industry ultimate morbidity assumptions for each time period. Beginning in 2000, many companies used the 1985 National Nursing Home Survey (NNHS) with an underwriting selection applied. More comprehensive policies covered home health care and sometimes priced this benefit as a rider to facility coverage. Companies with larger in-force blocks may have relied, to some degree, on their own experience.

We compared the industry average ultimate morbidity assumption in 2000 for attained ages (AAs) 80, 90 and 100 to the assumptions used in 2007 and 2014. Figure 5 shows this comparison.

Figure 5: Ultimate Morbidity vs. 2000 Pricing Assumption, by Attained Age

Pricing Year	AA 80	AA 90	AA100
2000	—	—	—
2007	+10%	+15%	+0%
2014	+15%	+45%	+25%

Because of the exponential nature of the LTCI claim cost curve, claim credibility has increased dramatically since 2000. In particular, at older attained ages, we found that the amount of historical claim experience in 2014 was 70 times greater than in 2000. This implies that the credibility of LTC claim experience in the older attained ages was more than eight times greater in 2014 than in 2000.

The select period following initial underwriting has also changed since the 2000 pricing. Morbidity selection factors in our three pricing periods followed the pattern seen in Figure 6.

Figure 6: Industry Average Morbidity Selection

Pricing Year	Initial Selection Factor (grading to 100%)	Select Period
2000	50%	5 years
2007	50%	5 years
2014	25%	7 years

This improvement in select morbidity and the lengthening of the select period are likely due to carriers' increased rigor during underwriting. As underwriting continues to benefit from improvements in technology, we may expect to see further lengthening of the select period.

In aggregate, estimates of ultimate morbidity costs have increased since 2000. Morbidity assumptions developed today are more credible and thus less likely to experience extreme deviations. This improved credibility is a major driver of our conclusion that there is a lower likelihood that products priced in each succeeding generation of LTC products will need rate increases.

Mortality

Mortality has continued to improve through the course of the study period. In 2000, the average industry mortality assumption relied on the 1994 Group Annuitant Mortality (GAM) table, coinciding with the table's prescribed use for valuing LTC policies in the American Academy of Actuaries' annual *Life and Health Valuation Law Manual*.⁷ Pricing mortality for LTC policies improved during the study years, as shown in Figure 7.

Figure 7: Industry Average Mortality Assumption

Pricing Year	Ultimate Mortality	Selection
2000	1994 GAM	Included
2007	10% lower vs. 2000 assumptions	Greater early duration selection
2014	20% lower vs. 2007 assumptions	Greater early duration selection

Long-term care insurance pools risks to finance claims in later durations with premiums paid in earlier policy years. A certain expectation of lapses and mortality supports the premium rates developed. In general, since earlier LTC products were priced, more policyholders have retained their policies than insurance carriers anticipated. Policyholders died at lower rates than expected or allowed their policies to lapse less frequently than assumed. From the consumer's perspective, a lower lapse rate demonstrates an understanding of the value of the LTCI policy. To maintain the financial health of LTCI blocks, though, insurers have raised premium rates to account for the greater volume of insureds retaining their policies and going on claim.

From this perspective, mortality that has improved to a greater degree than what pricing actuaries expected places a financial stress on LTCI blocks. While the theoretical limit to mortality improvement is still far off, life insurance carriers often project 10 to 20 years of mortality improvement as a best estimate in cash flow testing analysis. Forces that drive the underlying causes of population mortality improvement may be tied to those that will drive improvement to morbidity as well. For this reason, the two assumptions are often developed in parallel.

⁷ American Academy of Actuaries, "Appendix A: Health Insurance Reserves Model Regulation," in *Life and Health Valuation Law Manual.*

Morbidity and Mortality Improvement

While mortality has improved consistently, morbidity is likely also improving for each new generation of LTC policyholders. One study estimates that, for an uninsured, age 65+ population, morbidity improved between 1% and 2% per year on an age-adjusted basis between 1984 and 2004.⁸ The positive effect of morbidity improvement in this study offsets the unfavorable financial impact of mortality improvement. The result is an overall favorable impact from the combined morbidity and mortality improvement.

Many companies project similar morbidity and mortality assumptions—namely projecting no improvement at all—or improvement in both assumptions for the same projection period (such as 10 years).

Voluntary Lapse

As indicated in the preceding mortality discussion, increased policyholder persistency—above that anticipated during policy pricing—will place a financial strain on LTCI blocks. Earlier generations of LTC policies were priced with voluntary lapse rates similar to those seen on annuity blocks, based on the reasoning that long-term care benefits resembled an annuity-like benefit. Figure 8 shows industry average voluntary lapse rate assumptions in the three pricing years.

Figure 8: Industry Average Voluntary Lapse Rates

Pricing Year	First-Year Lapse Rate	Ultimate Lapse Rate
2000	8.5%	2.8%
2007	4.5%	1.1%
2014	5.0%	0.7%

Voluntary lapse rates that emerged on in-force blocks in the past 15 years were significantly lower than anticipated. This was the impetus for many of the premium rate increases requested in the past 15 years, as well as the decrease in lapses assumed in pricing seen in Figure 8.

Because ultimate lapse rates are already close to the theoretical floor of 0%, it is far less likely that rate increases will be required on products priced today. This is due to the unfavorable emergence of the voluntary lapse assumption.

Investment Income

Long-term care policies are typically guaranteed renewable, and projections of future claims and premiums extend for 50 years or more. Premiums earned in the initial policy years are invested to contribute to the assets backing the growing active life reserve (ALR). The investment interest assumption, therefore, is critical to the financial health of the LTC policy. Figure 9 shows how investment income assumptions have decreased over the past 15 years.

⁸ P.J. Eric Stallard and Anatoliy I. Yashin. "LTC Morbidity Improvement Study: Estimates for the Non-Insured U.S. Elderly Population Based on the National Long-term Care Survey 1984–2004," Society of Actuaries, 2016, https://www.soa.org/Files/Research/Projects/research-2016-06-ltc-morbidity-improvement.pdf

Figure 9: Industry Average Investment Income Assumptions, by Pricing Year

Pricing Year	Average Investment Income Assumption, All Years
2000	6.4%
2007	5.9%
2014	4.6%

This reduction in the earned rates may represent more risk to existing in-force blocks. At the same time, lower investment income earnings imply that premiums for LTC products sold today will need to be higher to fund claim payments in the future. That said, the current low-interest-rate environment presents an upside to currently sold policies.

Expenses

Commissions paid to LTC producers in 2000 were similar to commissions found on other individual health products. First-year commissions in 2000 were lower than typical life insurance commissions, with higher renewal commissions to protect the company from replacements, to minimize surplus strain and to encourage persistency. Figure 10 shows industry average commissions in the three study years. Note that the last column in both Figure 10 (% of PV Premium) and Figure 11 (Admin. Expense % of PV Premium) shows the average of results reported from the carriers in the study and does not represent the result of an explicit calculation of present value of premiums.

Years Pricing Year Year 1 2 to 9 Years 10+ % of PV Premium 2000 70% 10% 7% 12.6% 2007 100% 10% 5% 13.4% 2014 105% 9% 5% 12.3%

Figure 10: Industry Average Commissions by Policy Year

Following pricing in 2000, lapse rates emerged far lower than anticipated. As a result, companies reduced renewal commissions and increased first-year commissions, which was more in line with life insurance products.

Long-term care policies overall have a more complex underwriting process than life insurance policies. Moreover, processing LTC claims is more expensive than processing death benefits. Initial administrative expenses are related to the policy acquisition, and later duration expenses are mostly claim processing. As a portion of the present value of premium, administrative expenses have declined since 2000, as seen in Figure 11.

>>>> 14

Figure 11: Industry Average Administrative Expenses

Pricing Year	Admin. Expense % of PV Premium
2000	20%
2007	18%
2014	16%

Market Pricing Landscape

The pricing landscape has changed substantially in the course of the 15 years spanned by this study. Margins for adverse claim experience—as permitted by regulators—have increased under each new NAIC LTC model regulation. Figure 12 shows the industry average pricing margin loads in the three study years.

Figure 12: Average Industry Pricing Margin Loads

Pricing Year	Pricing Margin Load
2000	Under minimum loss ratios, explicit margins to claims were zero.
2007	Under rate stabilization, 5% to 10% margins were effectively mandated.
2014	Margins have increased to 5% to 17%. Under adoption of the 2014 NAIC Model Regulation, the minimum is 10%.

Today, fewer companies are competing in the stand-alone LTC insurance marketplace, so concern for market share is lower than ever. Premiums for LTC products priced in 2000 were lower than those priced today, which was due to assumed lower persistency and higher investment earnings. Greater marketplace competition in 2000 fueled much lower premiums and a wider spread of premiums among companies. Subsequently, as claim margins increased, persistency rose, and as investment earnings fell, premiums increased. The spread of premiums among carriers, with fewer carriers in the market, decreased. Figure 13 shows the level of premiums and the spread of premiums in the three study years.

Figure 13: Industry Average Premiums and Spreads

Pricing Year	Highest / Lowest Premiums (spread)	Vs. 2000 Baseline Premiums
2000	200%	100%
2007	160%	125%
2014	145%	215%

Companies in the current stand-alone LTC market face an uphill marketing battle as customers see inforce blocks of LTC policies pummeled by rate increases. The critical finding of this Society of Actuaries (SOA) LTC Pricing Project is that LTC premium stability is greater today than ever before. Our research evaluates the likelihood that premium rates would need to rise for products priced in each of the three study years 2000, 2007, and 2014. The analysis uses best-estimate assumptions that were in place at the time of pricing and determines—based on stochastic model scenarios—how likely future premium rate increases would be, as determined by the actuary *in that pricing year*. Because of the growing volume of empirical data and the resulting improvement in data credibility, the potential for future rate increases on new LTC products has fallen in each of our study years and is now the lowest it has ever been. Figure 14 illustrates these key results. In Figure 14, the likelihood of a rate increase is based on the quantity of historical data used for morbidity assumptions by the risk of lower-than-expected lapses and the size of the company's risk margins. The distribution of actual future morbidity was assumed to be normally distributed around the *a priori* best estimate. The probability of a rate increase is highly correlated across companies. For example, a 40% chance of a rate increase affects all companies in the industry in the same way that a 40% chance of rain affects all houses in a neighborhood. Future results may be significantly different from the ranges in the model because of secular changes in morbidity, mortality and lapses. For example, an effective treatment for Alzheimer's disease could cause future morbidity to improve beyond the range implied by the normal distribution in this model. Please see the Technical Appendix for more details.

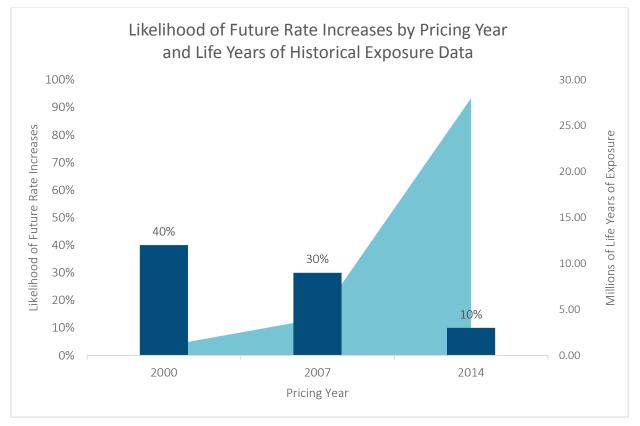


Figure 14: Likelihood of Future Rate Increase by Pricing Year and Life Years of Historical Exposure Data

The likelihood of needing future rate increases, by pricing year, and the life-years of historical exposure data available at the time of pricing.

The implications of these results are cause for optimism. First, improved premium stability implies a lower risk of policyholder disruption. Second, if rate increase requests are less frequent and/or lower, there is less regulatory risk for companies seeking any future rate increases. Finally, the reduced likelihood of premium rate increases implies more stable and potentially greater profitability for companies issuing policies today. Technical details on the modeling of these results can be found in the Technical Appendix.

Regulatory Environment

To address premium rate instability, the first "rate stabilization" NAIC Long-Term Care Insurance Model Regulation was passed in 2000. It was adopted by states over the succeeding five to 10 years and has

been revised twice, in 2009 and 2014. In hindsight, some may smirk at the almost ironic name applied to that regulation, as it was followed by more than a decade of large LTC rate increases. In practice, the regulation forced insurers to add a premium margin for adverse deviation, which was intended to keep rates stable.

In 2014, the regulation was revised to include an explicit minimum margin of 10% or more in premium rates, which was intended to further temper the need for future rate increases. The Interstate Insurance Product Regulation Commission (the IIPRC, or the Compact) is a regulatory body formed by the NAIC that allows companies to file products with a single entity and have their filings accepted in up to 44 different states. As of this paper's publication, the Compact is revising its regulatory standard on individual LTC. This revision may also include the 10% required premium margin, as the Compact standards generally dovetail with the latest NAIC model regulations on key issues.

Earning Back the Trust of Long-Term Care Producers

Agents selling LTCI have understandably felt an incredible amount of disillusionment and betrayal from the large-scale implementation of LTC rate increases over the past 15 years. These agents are the individuals who sat across the table from applicants, looked them in the eye and made promises on behalf of the carriers. Agents who had entered this field with the best intentions found it increasingly hard to wake up in the morning and find a reason to come to work.

When the first real wave of LTC premium rate increases began, many agents faced them with a one-anddone attitude--the increases were a one-time necessary evil. Rate increases were a huge distraction from the rest of their business, and most agents just wanted to get back to work. But the rate increases kept coming. What had been an expectation of a one-time hit turned into a routine conversation with their clients.

As a result, most agents have walked away, not wanting to risk their reputations. Carriers have lost the trust of producers, who don't want to do continuous damage control or risk their relationships with clients and/or referral sources.

The actions carriers have taken to rein in risk over the past 10 years have also led to outcomes that turn away agents:

- Products that dispense with desired benefits and are perceived as more difficult to sell
- Products so innovative that agents lack the patience to learn them
- Underwriting perceived as "tighter," which prompts agents to flee or to try less burdensome products
- Sex-distinct pricing, which hits the target market the hardest

It is far past time for insurance carriers to win back the trust of producers. While it is a cliché to say, "This time is different," the goal of the SOA LTC Pricing Project is to put firm numbers behind this message.

While this time may not be different, LTC pricing today has a demonstrably lower risk of facing future rate increases, as this analysis concludes.

Agents know they ought to recommend LTCI, and they need reassurance that it is safe to do so. For the first time, the media, government institutions and public policy initiatives are operating in tandem with private LTCI. All agree that this is a necessary product.

Technical Appendix

Introduction

The 2015 SOA LTC Pricing Project addressed this research question: what is the probability of a rate increase on new issues of LTCI? Theoretically, this could best be answered by creating a universe of all possible scenarios of future morbidity, mortality, lapse rates and interest rates. We could then assign a probability to each scenario, determine which scenarios trigger a rate increase and which do not and then sum the probabilities of the scenarios with rate increases. While such an approach would produce a technically correct result, we wanted our analysis to be less subjective.

What we objectively know is that, when comparing the policies being issued now with those issued in the past, today's policies have the benefit of more data supporting the morbidity assumptions, near rockbottom lapse assumptions and higher risk margins. Our objective in this project was to create a model that calculates the probability of a rate increase based on these facts. We created a stochastic model that takes the known facts into account and populated it with industry data. The model required some additional assumptions, which we set based on our professional judgment. To provide context around the results, the model was run using industry data for three historical pricing points in time. Other than industry data, all other assumptions remained the same across the three points. The results are shown in Figure 15.

Pricing Poin	robability of a Rate Increase	Average Size of Rate Increase
2000	40%	34%
2007	30%	18%
2014	10%	10%

Figure 15: Probabilities and Average Size of Rate Increases, by Year

Three points should be kept in mind when interpreting these results:

- 1. There is no 20/20 hindsight with the historical results. If we had taken this model with the same additional assumptions back to these specific points in time, these are the probabilities of rate increases we would have estimated then.
- 2. There is a high correlation among companies with these numbers. So a 40% chance of a rate increase doesn't imply that 40% of the companies will have a rate increase. Rather, it means that, with the industry averages we are using, there is a 40% chance that the industry as a whole will be hit with widespread rate increases.
- 3. These probabilities are simply estimates based on the specific assumptions described here. Actual future results could be outside these ranges if secular trends in the assumptions cause the future to be fundamentally different from the past.

Data

Six companies that continuously sold LTCI for at least 15 years volunteered to participate in this study. A survey was sent to each company requesting pricing data for a representative group of pricing cells. The data requested included the following:

- Best-estimate claim costs
- Best-estimate lapse rates
- Best-estimate mortality rate
- Best-estimate interest rate
- Aggregate risk margin

Additionally, the companies estimated the amount of data on which their assumptions were based. They provided both the total policy years of exposure across all policies and the number of policy years of exposure for the exposure years when most claims happen—policy duration of 10 years and above, and attained age 80 and above. Though best-estimate interest rates were provided, the final study did not incorporate interest rates into the determination of the likelihood of future rate increases.

The participating companies sent their completed surveys directly to the Society of Actuaries. The SOA averaged the results across the six companies into a single composite set of assumptions referred to as the "illustrative pricing assumptions." These data were the basis for the rest of the work.

Summary of Key Illustrative Pricing Assumptions

<u>Claim costs</u>: On average, the 2007 claim costs were 17% higher than the 2000 claim costs, and the 2014 claim costs were about 54% higher than the 2000 claim costs.

Lapse rates: The ultimate lapse rates decreased as follows:

Pricing Point	Ultimate Lapse Rates
2000	2.8%
2007	1.2%
2014	0.7%

Pricing margins: The pricing risk margins increased as follows:

Pricing Point	<u>Risk Margin</u>
2000	5.1%
2007	7.1%
2014	11.3%

Sales Distribution

We assumed the following sales distribution:

Issue Age

50	25%
60	50%
70	25%

Benefit Period

3 Years	33.3%
5 Years	33.3%
Lifetime	33.3%

Inflation Protection

None	50%
5% Compound	50%

Claim Cost Uncertainty

To estimate the probability of whether premium levels are sufficient to pay future claims without a rate increase, we need statistical distributions of what the future claim costs will actually be. These distributions are a function of how many policy years of exposure are supporting each cell. Creating these distributions requires significant actuarial judgment, especially in the context of this study, where only summaries of the actual data were available. The most important thing to understand is that the same judgments were consistently made across the three study years, so the respective probabilities of a rate increase are comparable.

For each of the three historical pricing points, the reported exposure years of data were distributed across an array of policy years in a smooth pattern that fit the data constraints (that is, the total number of policy years and the total number of policy years above attained age 80). Once the exposure was distributed this way, we estimated how many policy years of experience were supporting each claim cost estimate. With this, we estimated the variance of each claim cost.

We then assumed that there was a 100% correlation across policy durations. In other words, if the actual claim cost for the first policy year of a pricing cell was in the 95th percentile of its distribution, all subsequent claim costs would also be in the 95th percentile of their respective distributions. We then calculated to coefficient of variation for each historical pricing point.

The coefficients of variation are as follows:

Pricing Point	Coefficient of Variation
2000	31%
2007	16%
2014	9%

Lapse Uncertainty

We assumed that the actual future lapse rates follow a beta distribution, with parameters equal to the assumed lapse rate and the following sample strengths:⁹

Pricing Point	Sample Strength
2000	1,900
2007	9,000
2014	11,000

The sample strengths were set largely by actuarial judgment. The rates in 2000 are relatively low to reflect very little experience with lapses at high policy duration. The 2014 rate is only slightly more than the 2007 rate to reflect a tapering off in historical credibility and intrinsic uncertainty about precisely how we know what future lapse rates will be.

Stochastic Methodology

An actuarial forecasting model was created using the illustrative pricing assumptions. The model does not include an expense assumption or profit margin. The premiums were set equal to the best-estimate net premiums plus the risk margin. Because disappointing investment yields are not typically used to justify rate increases, all interest rates in the model are set to 0%.

The model has two stochastic elements: lapses and claim costs. To model the uncertainty of claim costs, at the beginning of each simulation, a random number—referred to as a "fuzz factor"—is drawn from a normal distribution with a mean of 1.00 and a standard deviation equal to the claim cost uncertainty coefficient of variance already described. This fuzz factor is then multiplied by every claim cost for every policy for the entire simulation. This product represents the real claim costs for each simulation.

To model the uncertainty of lapses, a random number is drawn from the beta distribution with the lapse rate and sample strength (SS) described earlier. The same quantile is used for every lapse in the simulation, so that if the lapse for the first year is in the 35th quantile, the lapses for all policies and durations of that simulation are in the 35th quantile. The claim costs and lapses are assumed to be statistically independent.

In each simulation, premiums and claims are projected, and the present value of profits is calculated. If the present value of the net premium plus risk margin is sufficient to cover the present value of claims, no rate increase is deemed necessary. If the net premium plus margin is less than the present value of claims, then a rate increase is required for that simulation. For the simulations where a rate increase is required, the average rate increase as a percentage of premium is calculated.

⁹ Sample strength (SS) = $\alpha + \beta$. See Roger Loomis et al., "Understanding the Volatility of Experience and Pricing Assumptions in Long-Term Care Insurance," Society of Actuaries, 2014, https://www.soa.org/research/research-projects/ltc/research-2014-understanding-volatility.aspx.

Observations

One of the fundamental assumptions of this model is that the original pricing assumptions are actually a best estimate of future claims. Thus, by design, if no risk margin is added to the premium, then the probability of a rate increase would be 50%. This is true regardless of how credible the data are. For example, if the data are very credible and there is no margin, then the average size of the rate increase may be small, but 50% of the scenarios would still require a rate increase. With this in mind, 40% of the scenarios requiring a rate increase in the 2000 model is a very high number and indicates that the risk margin was very low for the uncertainty in assumptions that existed at that point. The 10% probability of a rate increase in 2014 suggests that today's products really should be able to withstand marginal adverse experience without requiring a rate increase.

Another important point is the implication of using the normal distribution to represent uncertainty about future morbidity rates. This assumption implies that future morbidity and mortality will be driven by the same basic forces of morbidity and mortality that created past experience. While this may be true when using recent experience to project the near future, it is not realistic over longer time horizons. Secular trends in morbidity and mortality will cause the future to be fundamentally different from the past; thus, the normal distribution is inappropriate for forecasting what is really going to happen over the long term. Nevertheless, using the normal distribution is an objective and quantitative way to illustrate the effect of more data and higher margins on the probability of a rate increase with everything else being equal.

About the Society of Actuaries

The Society of Actuaries (SOA), formed in 1949, is one of the largest actuarial professional organizations in the world, dedicated to serving 27,000 actuarial members and the public in the United States, Canada and worldwide. In line with the SOA Vision Statement, actuaries act as business leaders who develop and use mathematical models to measure and manage risk in support of financial security for individuals, organizations and the public.

The SOA supports actuaries and advances knowledge through research and education. As part of its work, the SOA seeks to inform public policy development and public understanding through research. The SOA aspires to be a trusted source of objective, data-driven research and analysis with an actuarial perspective for its members, industry, policymakers and the public. This distinct perspective comes from the SOA as an association of actuaries, who have a rigorous formal education and direct experience as practitioners as they perform applied research. The SOA also welcomes the opportunity to partner with other organizations in our work where appropriate.

SOCIETY OF ACTUARIES

475 N. Martingale Road, Suite 600 Schaumburg, Illinois 60173 www.SOA.org